Facile, rapide et gratuit

Créez votre site maintenant

Je crée mon site
Site gratuit créé sur

The MADRAS project publications and communications are registered on this open access HAL repository.

Preprints

  1. Echeverría-Huarte, I., Roge, A., Simonin, O., & Nicolas, A. (2023) Foundations of continuous agent-based modelling frameworks for pedestrian dynamics and their implications. Preprint arXiv:2309.12798 available here.
  2. Chraibi, M., Schadschneider, A. & Tordeux, A. (2023) Social distancing and the future of pedestrian dynamics.  Preprint arXiv:2023.06065 available here.

Peer-reviewed journals

  1. Dang, H.-T., Gaudou, B., & Verstaevel, N. (2024) A literature review of dense crowd simulation. Simulation Modelling Practice and Theory, 102955, doi: 10.1016/j.simpat.2024.102955
  2. Dang, H.-T., Gaudou, B., & Verstaevel, N. (2024) HyPedSim: A Multi-Level Crowd-Simulation Framework—Methodology, Calibration, and Validation. Sensors, 24(5), 1639. doi: 10.3390/s24051639
  3. Cordes, J., Schadschneider, A., & Nicolas, A. (2024) Dimensionless numbers reveal distinct regimes in the structure and dynamics of pedestrian crowds. PNAS nexus, pgae120, doi: 10.1093/pnasnexus/pgae120
  4. Korbmacher, R. & Tordeux, A. (2024) Toward better pedestrian trajectory predictions: the role of density and time-to-collision in hybrid deep-learning algorithms. Sensors, vol. 24, no. 7, pp. 2356, doi: 10.3390/s24072356
  5. Korbmacher, R.,  Dang, H.-T. & Tordeux, A. (2024) Predicting pedestrian trajectories at different densities: A multi-criteria empirical analysis. Physica A: Statistical Mechanics and its Applications, vol. 634, pp. 129440, doi: 10.1016/j.physa.2023.129440. Preprint arXiv:2307.15442.

  6. Echeverría-Huarte, I., & Nicolas, A. (2023) Body and Mind: Decoding the dynamics of pedestrians and the effect of smartphone distraction by coupling decisional and mechanical processes. Transportation Research Part C: Emerging Technologies, 157:104365. doi: 10.1016/j.trc.2023.104365.
  7. Gnendiger, C., Chraibi M. and Tordeux, A. (2023) Come together: A unified description of the escalator capacity. PLOS ONE 18(3):e0282599. doi: 10.1371/journal.pone.0282599. 
  8. Xie, C. Z., Tang, T. Q., Zhang, B. T., & Nicolas, A. (2023) Adult-child pairs walking down stairs: Empirical analysis and optimal-step-based modeling of a complex pedestrian flow, with an exploration of flow-improvement strategies. Journal of Statistical Mechanics, 1:013404. doi: 0.1088/1742-5468/acb25f. Preprint arXiv:2210.06782
  9. Xiao, Y., Xu, J., Chraibi, M., Zhang, J., & Gou, C. (2022) A generalized trajectories-based evaluation approach for pedestrian evacuation models. Safety Science, 147:105574. doi: 10.1016/j.ssci.2021.105574. 
  10. Korbmacher, R., & Tordeux, A. (2022) Review of pedestrian trajectory prediction methods: comparing deep learning and knowledge-based approaches. IEEE Transactions on Intelligent Transportation Systems, 23(12):24126-24144. doi: 10.1109/TITS.2022.3205676. Preprint ArXiv:2204.10807.
  11. Khelfa, B., Korbmacher, R., Schadschneider, A., & Tordeux, A. (2022) Heterogeneity‑induced lane and band formation in self‑driven particle systems. Scientific Reports, 12(1):4768. doi: 10.1038/s41598-022-08649-4..

 

Peer-reviewed contributions to conference proceedings

  1. Echeverría-Huarte, I., & Nicolas, A. Revisiting the theoretical basis of agent-based models for pedestrian dynamics. In: Proceedings of the Traffic and Granular Flow 2022 (TGF22) Conference, pp. 19-26. doi: 10.1007/978-981-99-7976-9_3 
  2. Korbmacher, R., Dang, H.-T., Tordeux, A., Gaudou, B. & Verstaevel, N. Empirical comparison of different pedestrian trajectory prediction methods at high densities. In:   Proceedings of the Traffic and Granular Flow 2022 (TGF22) Conference, pp. 231-238. doi: 10.1007/978-981-99-7976-9_29
  3. Korbmacher, R. & Tordeux, A. (2024) Deep learning for predicting pedestrian trajectories in crowds. In: Intelligent Systems and Applications, Arai, Kohei, Eds. Cham: Springer Nature Switzerland, 2024, pp. 720-725. doi: 10.1007/978-3-031-47718-8_46

  4. Dang, H.-T., Korbmacher, R., Tordeux, A., Gaudou, B. & Verstaevel, N. (2023) TTC-SLSTM: Human trajectory prediction using time-to-collision interaction energy. 2023 15th International Conference on Knowledge and Systems Engineering (KSE), pp. 1-6, doi:10.1109/KSE59128.2023.10299443. Preprint hal-04251961 available here - Awarded as runner-up paper
  5. Dang, H.-T., Gaudou, B., & Verstaevel, N. (2023) A multi-level density-based crowd simulation architecture.  In: Mathieu, P., Dignum, F., Novais, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection. PAAMS 2023. Lecture Notes in Computer Science, vol. 13955. Springer, Cham. doi:10.1007/978-3-031-37616-0_6Preprint hal-04104250 available here.
  6. Cordes, J., Chraibi, M., Tordeux, A., & Schadschneider, A. (2021) Time-to-collision models for single-file pedestrian motion.  Proceedings of the 10th International Conference on Pedestrian and Evacuation Dynamics (PED21), Collective Dynamics, 6:10. doi: 10.17815/CD.2021.133.
  7. Khelfa, B., Korbmacher, R., Schadschneider, A., & Tordeux, A. (2021) Initiating lane and band formation in heterogeneous pedestrian dynamics. Proceedings of the 10th International Conference on Pedestrian and Evacuation Dynamics (PED21), Collective Dynamics, 6:13. doi: 10.17815/CD.2021.129. 

 

Peer-reviewed book chapters

  1. Cordes, J., Chraibi, M., Tordeux, A. & Schadschneider, A. (2023) Single-file pedestrian dynamics: a review of agent-following models. Bellomo, N. and Gibelli, L., Eds. Crowd Dynamics (vol. 4) Cham: Springer International Publishing, 2023, pp. 143-178. doi: 10.1007/978-3-031-46359-4_3. Preprint arXiv:2308.07451.
  2. Korbmacher, R.,  Nicolas, A., Tordeux, A. & Totzeck, C. (2023) Time-continuous microscopic pedestrian models: an overview. Bellomo, Nicola and Gibelli, Livio, Eds. Crowd Dynamics (vol. 4) Cham: Springer International Publishing, 2023, pp. 55-80. doi: 10.1007/978-3-031-46359-4_6. Preprint arXiv:2308.07450.

Communications in conferences

  1. Korbmacher, R. & Tordeux, A. Lane and band formation in mixed traffic flow. 7th Annual Meeting of the Cycling Research Board, 25 - 27 October 2023, Wuppertal University, Germany. Slides.
  2. Dang, H.-T., Korbmacher, R., Tordeux, A., Gaudou, B. & Verstaevel, N. TTC-SLSTM: Human trajectory prediction using time-to-collision interaction energy. 15th IEEE International Conference on Knowledge and Systems Engineering (KSE2023), October 18 - 20, 2023, Ha Noi, Vietnam. Slides.
  3. Dang, H.-T., Gaudou, B., & Verstaevel, N. A multi-level density-based crowd simulation architecture. 21st International Conference on Practical Applications of Agents and Multi-agents Systems (PAAMS 2023), July 12 - 14, 2023, Guimarães, Portugal. Slides.
  4. Dang, H.-T., Gaudou, B., & Verstaevel, N. Empirical analysis on external factors affecting pedestrian dynamics in high-density situations. Pedestrian and Evacuation Dynamics 2023 Conference (PED23), 27 – 30 June 2023, Eindhoven Technical University, The Netherlands. Poster.

  5. Dufour, O., Rodney, D., & Nicolas, A. Single-file motion revisited: perspectives from an energy-based model. Pedestrian and Evacuation Dynamics 2023 Conference (PED23), 27 – 30 June 2023, Eindhoven Technical University, The Netherlands. Poster.

  6. Cordes, J., Nicolas, A., & Schadschneider, A. Scaling Analysis of Crowd Dynamics. Pedestrian and Evacuation Dynamics 2023 Conference (PED23), 27 – 30 June 2023, Eindhoven Technical University, The Netherlands. Slides

  7. Korbmacher, R., Dang, H.-T., & Tordeux, A. Using time-to-collision in the loss function of deep learning algorithm to improve pedestrian trajectory predictions. Pedestrian and Evacuation Dynamics 2023 Conference (PED23), 27 – 30 June 2023, Eindhoven Technical University, The Netherlands. Poster.

  8. Chraibi, M., Cordes, J., Dang, H.-T. Dufour, O., Gaudou, B., Korbmacher, R., Nicolas, A., Rodney, D., Tordeux, A., & Verstaevel., N. Multi-Agent modelling of Dense cRowd dynAmicS (MADRAS): Application to the Festival of Lights in Lyon. Pedestrian and Evacuation Dynamics 2023 Conference (PED23), 27 – 30 June 2023, Eindhoven Technical University, The Netherlands. Abstract; Slides.

  9. Echeverría-Huarte, I., & Nicolas, A. Revisiting the theoretical basis of agent-based models for pedestrian dynamics. Traffic and Granular Flow 2022 (TGF22), 15 – 17 October 2022, IIT Delhi, India. 
  10. Korbmacher, R., Dang, H.-T., Tordeux, A., Gaudou, B. & Verstaevel, N. Differences in pedestrian trajectory predictions for high- and low-density situations. Traffic and Granular Flow 2022 (TGF22), 15 – 17 October 2022, IIT Delhi, India. Abstract; Slides.
  11. Echeverrìa-Huarte, I., & Nicolas, A. Modélisation de l’anticipation des collisions et des contacts dans la dynamique des foules piétonnes. 18ième Journées de la Matière Condensée (JMC18), 22 – 26 August 2022, Lyon, France. Abstract.
  12. Dufour, O., Echeverrìa-Huarte, I., Rodney, D., & Nicolas, A. The role of anticipation among pedestrians in the emergence of stop and go waves. 18ième Journées de la Matière Condensée (JMC18), 22 – 26 August 2022, Lyon, France. Poster.
  13. Cordes, J., Schadschneider, A., & Tordeux, A. Noise-induced breakdown in single-file motion. 18ième Journées de la Matière Condensée (JMC18), 22 – 26 August 2022, Lyon, France. Abstract; Poster.
  14. Dang, H.-T., Gaudou, B. & Verstaevel, N. Gampy: a fast plugin for integration of Python-based deep-learning models to the GAMA platform. 2nd GAMA Days Conference,  22 – 24 June 2022, Online, France. Abstract on HAL; Slides.
  15. Dang, H.-T., Gaudou, B. & Verstaevel, N. A modular framework for multi-behavior and multi-scale simulation of pedestrians. 2nd GAMA Days Conference,  22 – 24 June 2022, Online, France. Abstract on HAL; Slides.
  16. Korbmacher, R., Dang, H.-T., Tordeux, A., Gaudou, B. & Verstaevel, N. Using synthetic data to improve performance of data-driven algorithms in high density pedestrian situations. 2nd GAMA Days Conference, 22 – 24 June 2022, Online, France. Abstract on HAL; Slides.
  17. Echeverrìa-Huarte, I., & Nicolas, A. Modélisation de l'anticipation des collisions et des contacts dans la dynamique des foules piétonnes (conversation). Regional French Conference on Complex Systems (FRCCS 2022), 20 – 22 June 2022, Paris, France. Abstract.
  18. Dufour, O., & Nicolas, A. Stop and go pedestrian wave based on a behavioural model (flash talk). Regional French Conference on Complex Systems (FRCCS 2022), 20 – 22 June 2022, Paris, France. 
  19. Korbmacher, R., & Tordeux, A. Review of Pedestrian Trajectory Prediction methods: Comparing physics-based and data-based approaches. 10th International Conference on Pedestrian and Evacuation Dynamics (PED2021). 28 – 30 November 2021, Online, Melbourne, Australia. Abstract; Slides.
  20. Cordes, J., Chraibi, M., Schadschneider, A., & Tordeux, A. Distance vs time-to-collision pedestrian models: verification and validation. 10th International Conference on Pedestrian and Evacuation Dynamics (PED2021). 28 – 30 November 2021, Online, Melbourne, Australia. Abstract; Slides.
  21. Tordeux, A., Khelfa, B. & Schadschneider, A. Initiating lane and band formation in heterogeneous pedestrian dynamics. 10th International Conference on Pedestrian and Evacuation Dynamics (PED2021). 28 – 30 November 2021, Online, Melbourne, Australia. Abstract; Slides.
  22. Korbmacher, R., & Tordeux, A. Review of Pedestrian Trajectory Prediction methods: Comparing physics-based and data-based approaches. 17ième Journées de la Matière Condensée (JMC17), 24 – 27 August 2021, Online, Rennes, France. Abstract; Slides.
  23. Tordeux, A., Khelfa, B. & Schadschneider, A.  Heterogeneity-induced lane and band formation in self-driven particle systems. 17ième Journées de la Matière Condensée (JMC17), 24 – 27 August 2021, Online, Rennes, France. Abstract; Slides.